ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding.
نویسندگان
چکیده
DEAD-box proteins, the largest helicase family, catalyze ATP-dependent remodeling of RNA-protein complexes and the unwinding of RNA duplexes. Because DEAD-box proteins hydrolyze ATP in an RNA-dependent fashion, the energy provided by ATP hydrolysis is commonly assumed to drive the energetically unfavorable duplex unwinding. Here, we show efficient unwinding of stable duplexes by several DEAD-box proteins in the presence of the nonhydrolyzable ATP analog ADP-beryllium fluoride. Another ATP analog, ADP-aluminum fluoride, does not promote unwinding. The findings show that the energy from ATP hydrolysis is dispensable for strand separation. ATP binding, however, appears necessary. ATP hydrolysis is found to be required for fast enzyme release from the RNA and multiple substrate turnovers and thus for enzyme recycling.
منابع مشابه
Pathway of ATP utilization and duplex rRNA unwinding by the DEAD-box helicase, DbpA.
DEAD-box RNA helicase proteins use the energy of ATP hydrolysis to drive the unwinding of duplex RNA. However, the mechanism that couples ATP utilization to duplex RNA unwinding is unknown. We measured ATP utilization and duplex RNA unwinding by DbpA, a non-processive bacterial DEAD-box RNA helicase specifically activated by the peptidyl transferase center (PTC) of 23S rRNA. Consumption of a si...
متن کاملWhen core competence is not enough: functional interplay of the DEAD-box helicase core with ancillary domains and auxiliary factors in RNA binding and unwinding.
DEAD-box helicases catalyze RNA duplex unwinding in an ATP-dependent reaction. Members of the DEAD-box helicase family consist of a common helicase core formed by two RecA-like domains. According to the current mechanistic model for DEAD-box mediated RNA unwinding, binding of RNA and ATP triggers a conformational change of the helicase core, and leads to formation of a compact, closed state. In...
متن کاملStructural Basis for RNA Unwinding by the DEAD-Box Protein Drosophila Vasa
DEAD-box RNA helicases, which regulate various processes involving RNA, have two RecA-like domains as a catalytic core to alter higher-order RNA structures. We determined the 2.2 A resolution structure of the core of the Drosophila DEAD-box protein Vasa in complex with a single-stranded RNA and an ATP analog. The ATP analog intensively interacts with both of the domains, thereby bringing them i...
متن کاملA conformational change in the helicase core is necessary but not sufficient for RNA unwinding by the DEAD box helicase YxiN
Cooperative binding of ATP and RNA to DEAD-box helicases induces the closed conformation of their helicase core, with extensive interactions across the domain interface. The bound RNA is bent, and its distortion may constitute the first step towards RNA unwinding. To dissect the role of the conformational change in the helicase core for RNA unwinding, we characterized the RNA-stimulated ATPase ...
متن کاملThe DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation
DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed "helicases," their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 51 شماره
صفحات -
تاریخ انتشار 2008